Import system images

System-level container images are used by all users. You can obtain images from Lenovo salesperson or import images into LiCO as system-level container images. This section describes how to create and import system-level container images.

Image bootstrap files

Download image_bootstrap.zip from https://hpc.lenovo.com/lico/downloads/7.0/images/host/image_bootstrap.zip, image_bootstrap.zip includes the following singularity bootstrap(definition) files, then we can use it to create images.

File nameFrameworkCPU/GPUComments
caffe-1.0-cpuCaffeCPU 
caffe-1.0-gpu-cuda92CaffeCUDA 9.2Supports P100 and V100
Caffe does not support CUDA 9.0 officially
NVCaffe-0.17.3-gpu-cuda102CaffeCUDA 10.2Supports P100 and V100
chainer-6.7.0-gpu-cuda101ChainerCUDA 10.1Supports P100, V100, RTX5000, RTX8000 and T4
cvatOtherCPU 
intel-caffe-1.1.6-cpuIntel-caffeCPU 
intel-python-3.7OtherCPU 
intel-pytorch-1.7.0-cpuPyTorchCPU 
intel-tensorflow-1.15.2-cpuTensorFlowCPU 
intel-tensorflow-2.3.0-cpuTensorFlowCPU 
jupyter-intel-optimized-pytorchJupyterCPU 
jupyter-intel-optimized-tensorflowJupyterCPU 
jupyter-defaultJupyterCPU
CUDA 11.8
Supports P100, V100, RTX5000, RTX8000, T4 and A100
jupyter-py37JupyterCPU
CUDA 11.8
Supports P100, V100, RTX5000, RTX8000, T4 and A100
jupyter-py38JupyterCPU
CUDA 11.8
Supports P100, V100, RTX5000, RTX8000, T4 and A100
jupyter-intel-py37JupyterCPU 
letrain-1.7.0-cuda110LeTrainCPU
CUDA 11.0
Supports P100, V100, RTX5000, RTX8000, T4 and A100
mxnet-1.9.1-cpuMxnetCPU 
mxnet-1.9.1-gpu-cuda112MxnetCUDA 11.2Supports P100, V100, RTX5000, RTX8000 and T4
neon-2.6-cpuNeonCPU 
paddle-2.3.0-cuda112paddlepaddleCUDA 11.2Supports P100, V100, RTX5000, RTX8000, T4 and A100
pytorch-1.13.0-cuda118PyTorchCUDA 11.8Supports P100, V100, RTX5000, RTX8000, T4 and A100
rstudioRStudioCPU
CUDA 11.2
Supports P100, V100, RTX5000, RTX8000, T4 and A100
scikit-single-cpuScikitCPU 
tensorflow-1.15.3-cuda110TensorFlowCPU
CUDA 11.0
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.3-cuda110-hbaseTensorFlowCPU
CUDA 11.0
Supports HBase
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.3-cuda110-kerasTensorFlowCPU
CUDA 11.0
Supports Keras(2.2.4)
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.3-cuda110-mongodbTensorFlowCPU
CUDA 11.0
Supports MongoDB
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.2-mklTensorFlowCPU 
tensorflow-2.5.0-cuda114TensorFlowCPU
CUDA 11.4
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorrt-7.1.3.4-cuda110TensorRTCUDA 11.0Supports P100, V100,T4 and A100
tensorrt-8.0.1.6-cuda114TensorRTCUDA 11.4Supports P100, V100,T4 and A100

Create images

Step 1. Prepare a build node with a minimum storage of 100 GB.

Notes:

Step 2. To the build node, ensure that squashfs-tools, libarchive, and make are installed.

Step 3. To the build node, upload the compressed image bootstrap file you obtained which named image_bootstrap.zip. For example, upload the compressed package to the new directory /opt/images. If the new directory cannot be found, create it manually. Note that both this new directory and /var/tmp cannot be an NFS mount.

Step 4. To the build node, run the following commands to extract the compressed package.

Step 5. To the build node, do one of the following to create image. The created image file is in the dist folder of the current directory.

Import images into LiCO as system-level images

Step 1. Copy the created images to the management node.

For example, copy the images to directory /opt/images. Note that both this directory and /var/tmp cannot be an NFS mount

Step 2. Run the following commands to import images into LiCO: