Import system images

System-level container images are used by all users. You can obtain images from Lenovo salesperson or import images into LiCO as system-level container images. This section describes how to create and import system-level container images.

Image bootstrap files

LiCO is released with image bootstrap files for commonly-used AI frameworks. The image bootstrap files for commonly-used AI frameworks in the compressed package you obtained(https://hpc.lenovo.com/lico/downloads/6.3/images/k8s/image_bootstrap.zip). Users can use these files to create images.

The table below lists the image bootstrap files.

File nameImagesFrameworkCPU/GPUComments
caffe-1.0-cpucaffe:caffe-1.0-cpuCaffeCPU 
caffe-1.0-gpu-cuda92caffe:caffe-1.0-gpu-cuda92CaffeCUDA 9.2Supports P100 and V100 Caffe does not support CUDA 9.0 officially
NVCaffe-0.17.3-gpu-cuda102caffe:NVCaffe-0.17.3-gpu-cuda102CaffeCUDA 10.2Supports P100 and V100
chainer-6.7.0-gpu-cuda101chainer:chainer-6.7.0-gpu-cuda101ChainerCUDA 10.1Supports P100, V100, RTX5000, RTX8000 and T4
intel-caffe-1.1.3-cpuintel-caffe:intel-caffe-1.1.3-cpuIntel-caffeCPU 
intel-pythonintel-python:intel-pythonOtherCPU 
intel-pytorch-1.7.0-cpuintel-pytorch:intel-pytorch-1.7.0-cpuPyTorchCPU 
intel-tensorflow-1.15.2-cpuintel-tensorflow:intel-tensorflow-1.15.2-cpuTensorFlowCPU 
intel-tensorflow-2.3.0-cpuintel-tensorflow:intel-tensorflow-2.3.0-cpuTensorFlowCPU 
jupyter-py36jupyter:jupyter-py36JupyterCUDA 10.0Supports P100, V100, RTX5000, RTX8000 and T4
jupyter-py37jupyter:jupyter-py37JupyterCUDA 11.0Supports P100, V100, RTX5000, RTX8000 , T4 and A100
letrain-1.5.0-cuda110lico:letrain-1.5.0-cuda110LeTrainCPU 
lico-ai-scriptslico-k8s-client:latestOtherCPUIndispensable
lico-file-managerlico-file-manager:latestOtherCPUIndispensable
mxnet-1.5.0-cpu-mklmxnet:mxnet-1.5.0-cpu-mklMxnetCPU 
mxnet-1.5.0-gpu-mkl-cuda101mxnet:mxnet-1.5.0-gpu-mkl-cuda101MxnetCUDA 10.1Supports P100, V100, RTX5000, RTX8000 and T4
neon-2.6-cpuneon:neon-2.6-cpuNeonCPU 
pytorch-1.9.0-cuda113pytorch:pytorch-1.9.0-cuda113PyTorchCUDA 11.3Supports P100, V100, RTX5000, RTX8000, T4 and A100
scikit-single-cpuscikit:scikit-single-cpuScikitCPU 
tensorflow-1.15.3-cuda110tensorflow:tensorflow-1.15.3-cuda110TensorFlowCPU
CUDA 11.0
Supports Keras(2.2.4)
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.3-cuda110-hbasetensorflow:tensorflow-1.15.3-cuda110-hbaseTensorFlowCPU
CUDA 11.0
Supports HBase
Supports P100, V100, RTX5000, RTX8000 and T4
tensorflow-1.15.3-cuda110-kerastensorflow:tensorflow-1.15.3-cuda110-kerasTensorFlowCPU
CUDA 11.0
Supports Keras(2.2.4)
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.3-cuda110-mongodbtensorflow:tensorflow-1.15.3-cuda110-mongodbTensorFlowCPU
CUDA 11.0
Supports MongoDB
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorflow-1.15.2-mkltensorflow:tensorflow-1.15.2-mklTensorFlowCPU
CUDA 10.0
Supports P100, V100, RTX5000, RTX8000 and T4
tensorflow-2.5.0-cuda114tensorflow:tensorflow-2.5.0-cuda114TensorFlowCPU
CUDA 11.4
Supports P100, V100, RTX5000, RTX8000, T4 and A100
tensorrt-7.1.3.4-cuda110tensorrt:tensorrt-7.1.3-cuda110TensorRTCUDA 11.0Supports P100, V100 and A100

Create images

Step 1. Prepare a build node with a minimum storage of 100 GB.

Notes:

step 2. To the build node, upload the compressed image bootstrap file you obtained which named image_bootstrap.zip(https://hpc.lenovo.com/lico/downloads/6.3/images/k8s/image_bootstrap.zip). For example, upload the compressed package to the new directory /opt/images.

Step 3. To the build node, run the following commands to configure the image:

Step 4. To the build node, do one of the following to create image.

Step 5. Push the created docker image to one existing docker repository, the repository can be one docker registry (https://docs.docker.com/registry/) or one docker harbor (https://goharbor.io/) or docker hub (https://hub.docker.com/), just make sure the k8s nodes can access the docker repository. For example:

Import images into LiCO as system-level images

Run the following commands on the LiCO node to import images from docker repository:

Attention: Modify 10.240.212.106:5000 to the actual url of your docker repository.