System-level container images are used by all users. You can obtain images from Lenovo salesperson or import images into LiCO as system-level container images. This section describes how to create and import system-level container images.
Download image_bootstrap.zip from https://hpc.lenovo.com/lico/downloads/6.0/images/host/image_bootstrap.zip, image_bootstrap.zip includes the following singularity bootstrap(definition) files, then we can use it to create images.
| File name | Framework | CPU/GPU | Comments |
|---|---|---|---|
| caffe-1.0-cpu | Caffe | CPU | |
| caffe-1.0-gpu-cuda92 | Caffe | CUDA 9.2 | Supports P100 and V100 Caffe does not support CUDA 9.0 officially |
| chainer-6.7.0-gpu-cuda101 | Chainer | CUDA 10.1 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| intel-caffe-1.1.6-cpu | Intel-caffe | CPU | |
| intel-python | Other | CPU | |
| jupyter-py36-cpu | Jupyter | CPU | |
| jupyter-py36-gpu | Jupyter | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| jupyter-py37-cpu | Jupyter | CPU | |
| jupyter-py37-gpu | Jupyter | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| letrain-1.3-cpu | LeTrain | CPU | |
| letrain-1.3-gpu-cuda100 | LeTrain | CPU | Supports P100, V100, RTX5000, RTX8000 and T4 |
| mxnet-1.5.0-cpu-mkl | Mxnet | CPU | |
| mxnet-1.5.0-gpu-mkl-cuda100 | Mxnet | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| neon-2.6-cpu | Neon | CPU | |
| pytorch-1.1.0-gpu-cuda100 | PyTorch | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| scikit-single-cpu | Scikit | CPU | |
| tensorflow-1.15.2-cpu | TensorFlow | CPU | |
| tensorflow-1.15.2-gpu-cuda100 | TensorFlow | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
| tensorflow-1.15.2-gpu-cuda100-hbase | TensorFlow | CUDA 10.0 | Supports HBase Supports P100, V100, RTX5000, RTX8000 and T4 |
| tensorflow-1.15.2-gpu-cuda100-keras | TensorFlow | CUDA 10.0 | Supports Keras(2.2.4) Supports P100, V100, RTX5000, RTX8000 and T4 |
| tensorflow-1.15.2-gpu-cuda100-mongodb | TensorFlow | CUDA 10.0 | Supports MongoDB Supports P100, V100, RTX5000, RTX8000 and T4 |
| tensorflow-1.15.2-mkl | TensorFlow | CPU | |
| tensorflow-2.1.0-cpu | TensorFlow | CPU | |
| tensorflow-2.1.0-gpu-cuda100 | TensorFlow | CUDA 10.0 | Supports P100, V100, RTX5000, RTX8000 and T4 |
Step 1. Prepare a build node with a minimum storage of 100 GB.
Notes:
Step 2. To the build node, ensure that squashfs-tools, libarchive, and make are installed.
Step 3. To the build node, upload the compressed image bootstrap file you obtained which named image_bootstrap.zip. For example, upload the compressed package to the new directory /opt/images. If the new directory cannot be found, create it manually. Note that both this new directory and /var/tmp cannot be an NFS mount.
Step 4. To the build node, run the following commands to extract the compressed package.
xxxxxxxxxxcd /opt/imagesunzip image_bootstrap.zipStep 5. To the build node, do one of the following to create image. The created image file is in the dist folder of the current directory.
Run the following commands to create all images at once:
xxxxxxxxxxcd /opt/images/image_bootstrapmake allRun the following commands to create a group images at once:
xxxxxxxxxxcd /opt/images/image_bootstrapmake caffemake intel-caffemake intel-pythonmake tensorflowmake mxnetmake neonmake chainermake letrainmake jupytermake pytorchmake scikitNotes: Check the network when one of the following errors is displayed:
Step 1. Copy the created images to the management node.
For example, copy the images to directory /opt/images. Note that both this directory and /var/tmp cannot be an NFS mount
Step 2. Run the following commands to import images into LiCO:
cd /opt/imageslico import_image caffe-cpu caffe-1.0-cpu.image caffelico import_image caffe-gpu caffe-1.0-gpu-cuda92.image caffelico import_image intel-caffe intel-caffe-1.1.6-cpu.image intel-caffelico import_image intel-python intel-python.image otherlico import_image tensorflow-cpu tensorflow-1.15.2-cpu.image tensorflowlico import_image tensorflow-mkl tensorflow-1.15.2-mkl.image tensorflowlico import_image tensorflow-gpu tensorflow-1.15.2-gpu-cuda100.image tensorflowlico import_image tensorflow-gpu-hbase \tensorflow-1.15.2-gpu-cuda100-hbase.image tensorflowlico import_image tensorflow-gpu-keras \tensorflow-1.15.2-gpu-cuda100-keras.image tensorflowlico import_image tensorflow-gpu-mongodb \tensorflow-1.15.2-gpu-cuda100-mongodb.image tensorflowlico import_image tensorflow2-cpu tensorflow-2.1.0-cpu.image tensorflow2lico import_image tensorflow2-gpu tensorflow-2.1.0-gpu-cuda100.image tensorflow2lico import_image mxnet-cpu mxnet-1.5.0-cpu-mkl.image mxnetlico import_image mxnet-gpu mxnet-1.5.0-gpu-mkl-cuda100.image mxnetlico import_image neon neon-2.6-cpu.image neonlico import_image chainer-gpu chainer-6.7.0-gpu-cuda101.image chainerlico import_image letrain-cpu letrain-1.3-cpu.image letrainlico import_image letrain-gpu letrain-1.3-gpu-cuda100.image letrainlico import_image jupyter-py36-cpu jupyter-py36-cpu.image jupyter -t py36 -t cpulico import_image jupyter-py36-gpu jupyter-py36-gpu.image jupyter -t py36 -t gpulico import_image jupyter-py37-cpu jupyter-py37-cpu.image jupyter -t py37 -t cpulico import_image jupyter-py37-gpu jupyter-py37-gpu.image jupyter -t py37 -t gpulico import_image pytorch pytorch-1.1.0-gpu-cuda100.image pytorchlico import_image scikit-cpu scikit-single-cpu.image scikit