The table below lists the image bootstrap files.
File name | Framework | CPU/GPU | Comments |
---|---|---|---|
caffe-1.0-cpu | Caffe | CPU | |
caffe-1.0-gpu-cuda92 | Caffe | CUDA 9.2 |
|
chainer-6.2.0-gpu-cuda100 | Chainer | CUDA 10.0 |
|
intel-caffe-1.1.3-cpu | Intel-caffe | CPU | |
intel-python | Other | CPU | |
jupyter-py27-cpu | Jupyter | CPU | |
jupyter-py27-gpu | Jupyter | CUDA 10.0 |
|
jupyter-py36-cpu | Jupyter | CPU | |
jupyter-py36-gpu | Jupyter | CUDA 10.0 |
|
jupyter-py37-cpu | Jupyter | CPU | |
jupyter-py37-gpu | Jupyter | CUDA 10.0 |
|
letrain-1.2-cpu | LeTrain | CPU | |
letrain-1.2-gpu-cuda100 | Caffe | CPU |
|
lico-file-manager | Other | CPU |
|
lico-k8s-tools | Other | CPU |
|
mxnet-1.5.0-cpu-mkl | Mxnet | CPU | |
mxnet-1.5.0-gpu-mkl-cuda100 | Mxnet | CUDA 10.0 |
|
neon-2.6-cpu | Neon | CPU | |
pytorch-1.1.0-gpu-cuda100 | PyTorch | CUDA 10.0 |
|
scikit-single-cpu | Scikit | CPU | |
tensorflow-1.13.1-cpu | TensorFlow | CPU | |
tensorflow-1.13.1-gpu-cuda100 | TensorFlow | CUDA 10.0 |
|
tensorflow-1.13.1-gpu-cuda100-hbase | TensorFlow | CUDA 10.0 |
|
tensorflow-1.13.1-gpu-cuda100-keras | TensorFlow | CUDA 10.0 |
|
tensorflow-1.13.1-gpu-cuda100-mongodb | TensorFlow | CUDA 10.0 |
|
tensorflow-1.13.1-mkl | TensorFlow | CPU | |
tensorflow-2.0.0-cpu | TensorFlow | CPU | |
tensorflow-2.0.0-gpu-cuda100 | TensorFlow | CUDA 10.0 |
|
Step 1. Check to ensure that the lico-auth-internal.key file is under /etc/lico on the LiCO node.
Step 2. Prepare a build node with a minimum storage of 100 GB.
Step 3. To the build node, copy the /etc/lico/lico-auth-internal.key file from the LiCO node. For example, copy the lico-auth-internal.key file to the new directory /opt/images. If the new directory cannot be found, create it manually.
step 4. To the build node, upload the compressed image bootstrap file you obtained which named image_bootstrap.zip. For example, upload the compressed package to the new directory /opt/images.
Step 5. To the build node, run the following commands to configure the image:
cd /opt/images
unzip image_bootstrap.zip
cp /opt/images/lico-auth-internal.key /opt/images/image_bootstrap/lico-file-manager
cp /opt/images/lico-auth-internal.key /opt/images/image_bootstrap/lico-k8s-tools
chmod 744 /opt/images/image_bootstrap/lico-k8s-tools/lico-auth-internal.key
chmod 744 /opt/images/image_bootstrap/lico-file-manager/lico-auth-internal.key
Step 6. To the build node, do one of the following to create image.
cd /opt/images/image_bootstrap
make all
cd /opt/images/image_bootstrap
make caffe-cpu
make caffe-gpu
make intel-caffe
make intel-python
make tensorflow-cpu
make tensorflow-gpu
make tensorflow-mkl
make tensorflow-hbase
make tensorflow-keras
make tensorflow-mongodb
make tensorflow2-cpu
make tensorflow2-gpu
make neon
make chainer
make mxnet-cpu
make mxnet-gpu
make pytorch
make letrain-gpu
make letrain-cpu
make jupyter-cpu
make jupyter-gpu
make lico-file-manager
make lico-k8s-client
make scikit
Step 7. Import the ready image into the Docker Repository.
Run the following commands on the LiCO node to import images from Docker Repository:
lico import_system_image kube-tools <LiCO-K8s-Client-IMAGE> other
lico import_system_image lico-file-manager <LiCO-File-Manager-IMAGE> other
lico import_system_image caffe-cpu <Caffe-CPU-IMAGE> caffe
lico import_system_image caffe-gpu <Caffe-GPU-IMAGE> caffe
lico import_system_image tensorflow-cpu <TensorFlow-CPU-IMAGE> tensorflow
lico import_system_image tensorflow-gpu <TensorFlow-GPU-IMAGE> tensorflow
lico import_system_image tensorflow2-cpu <TensorFlow2-CPU-IMAGE> tensorflow2
lico import_system_image tensorflow2-gpu <TensorFlow2-GPU-IMAGE> tensorflow2
lico import_system_image tensorflow-mkl <TensorFlow-MKL-IMAGE> tensorflow
lico import_system_image tensorflow-gpu-hbase <TensorFlow-HBase-IMAGE> tensorflow
lico import_system_image tensorflow-gpu-keras <TensorFlow-Keras-IMAGE> tensorflow
lico import_system_image tensorflow-gpu-mongodb <TensorFlow-MongoDB-IMAGE> tensorflow
lico import_system_image intel-caffe <Intel-Caffe-IMAGE> intel-caffe
lico import_system_image intel-python <Intel-Python-IMAGE> other
lico import_system_image pytorch <PyTorch-IMAGE> pytorch
lico import_system_image neon <NEON-CPU-IMAGE> neon
lico import_system_image chainer-gpu <Chainer-GPU-IMAGE> chainer
lico import_system_image letrain-cpu <LeTrain-CPU-IMAGE> letrain
lico import_system_image letrain-gpu <LeTrain-GPU-IMAGE> letrain
lico import_system_image mxnet-cpu <MXNet-CPU-IMAGE> mxnet
lico import_system_image mxnet-gpu <MXNet-GPU-IMAGE> mxnet
lico import_system_image jupyter-py27-cpu <Jupyter-py27-CPU-IMAGE> jupyter -t py27 -t cpu
lico import_system_image jupyter-py27-gpu <Jupyter-py27-CPU-IMAGE> jupyter -t py27 -t gpu
lico import_system_image jupyter-py36-cpu <Jupyter-py36-CPU-IMAGE> jupyter -t py36 -t cpu
lico import_system_image jupyter-py36-gpu <Jupyter-py36-GPU-IMAGE> jupyter -t py36 -t gpu
lico import_system_image jupyter-py37-cpu <Jupyter-py37-CPU-IMAGE> jupyter -t py37 -t cpu
lico import_system_image jupyter-py37-gpu <Jupyter-py37-GPU-IMAGE> jupyter -t py37 -t gpu
lico import_system_image scikit-cpu <Scikit-CPU-IMAGE> scikit
Attention: Modify <*-IMAGE> to the actual path in Docker repository.