Import system images

System-level container images are used by all users. You can obtain images from Lenovo salesperson or import images into LiCO as system-level container images. This section describes how to create and import system-level container images.

Image bootstrap files

The image bootstrap files for commonly-used AI frameworks in the compressed package you obtained. Users can use these files to create images.

The table below lists the image bootstrap files.

File name Framework CPU/GPU Comments
caffe-1.0-cpu Caffe CPU
caffe-1.0-gpu-cuda92 Caffe CUDA 9.2
  • Supports P100 and V100
  • Caffe does not support CUDA 9.0 officially
  • chainer-6.2.0-gpu-cuda100 Chainer CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • intel-caffe-1.1.6-cpu Intel-caffe CPU
    intel-python Other CPU
    jupyter-py27-cpu Jupyter CPU
    jupyter-py27-gpu Jupyter CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • jupyter-py36-cpu Jupyter CPU
    jupyter-py36-gpu Jupyter CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • jupyter-py37-cpu Jupyter CPU
    jupyter-py37-gpu Jupyter CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • letrain-1.2-cpu LeTrain CPU
    letrain-1.2-gpu-cuda100 Caffe CPU
  • Supports P100, V100, RTX5000, and T4
  • mxnet-1.5.0-cpu-mkl Mxnet CPU
    mxnet-1.5.0-gpu-mkl-cuda100 Mxnet CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • neon-2.6-cpu Neon CPU
    pytorch-1.1.0-gpu-cuda100 PyTorch CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • scikit-single-cpu Scikit CPU
    tensorflow-1.13.1-cpu TensorFlow CPU
    tensorflow-1.13.1-gpu-cuda100 TensorFlow CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • tensorflow-1.13.1-gpu-cuda100-hbase TensorFlow CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • Supports HBase
  • tensorflow-1.13.1-gpu-cuda100-keras TensorFlow CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • Supports Keras(2.2.4)
  • tensorflow-1.13.1-gpu-cuda100-mongodb TensorFlow CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • Supports MongoDB
  • tensorflow-1.13.1-mkl TensorFlow CPU
    tensorflow-2.0.0-cpu TensorFlow CPU
    tensorflow-2.0.0-gpu-cuda100 TensorFlow CUDA 10.0
  • Supports P100, V100, RTX5000, and T4
  • Create images

    Step 1. Prepare a build node with a minimum storage of 100 GB.

    Step 2. To the build node, ensure that squashfs-tools, libarchive, and make are installed.

    Step 3. To the build node, upload the compressed image bootstrap file you obtained which named image_bootstrap.zip. For example, upload the compressed package to the new directory /opt/images. If the new directory cannot be found, create it manually. Note that both this new directory and /var/tmp cannot be an NFS mount.

    Step 4. To the build node, run the following commands to extract the compressed package.

    	cd /opt/images
    	unzip image_bootstrap.zip
    

    Step 5. To the build node, do one of the following to create image. The created image file is in the dist folder of the current directory.

    Import images into LiCO as system-level images

    Step 1. Copy the created images to the management node.
            For example, copy the images to directory /opt/images. Note that both this directory and /var/tmp cannot be an NFS mount

    Step 2. Run the following commands to import images into LiCO:

    	cd /opt/images
    	lico import_system_image caffe-cpu caffe-1.0-cpu.image caffe
    	lico import_system_image caffe-gpu caffe-1.0-gpu-cuda92.image caffe
    	lico import_system_image intel-caffe intel-caffe-1.1.6-cpu.image intel-caffe
    	lico import_system_image intel-python intel-python.image other
    	lico import_system_image tensorflow-cpu tensorflow-1.13.1-cpu.image tensorflow
    	lico import_system_image tensorflow-mkl tensorflow-1.13.1-mkl.image tensorflow
    	lico import_system_image tensorflow-gpu tensorflow-1.13.1-gpu-cuda100.image tensorflow
    	lico import_system_image tensorflow-gpu-hbase tensorflow-1.13.1-gpu-cuda100-hbase.image tensorflow
    	lico import_system_image tensorflow-gpu-keras tensorflow-1.13.1-gpu-cuda100-keras.image tensorflow
    	lico import_system_image tensorflow-gpu-mongodb tensorflow-1.13.1-gpu-cuda100-mongodb.image tensorflow
    	lico import_system_image tensorflow2-cpu tensorflow-2.0.0-cpu.image tensorflow2
    	lico import_system_image tensorflow2-gpu tensorflow-2.0.0-gpu-cuda100.image tensorflow2
    	lico import_system_image mxnet-cpu mxnet-1.5.0-cpu-mkl.image mxnet
    	lico import_system_image mxnet-gpu mxnet-1.5.0-gpu-mkl-cuda100.image mxnet
    	lico import_system_image neon neon-2.6-cpu.image neon
    	lico import_system_image chainer-gpu chainer-6.2.0-gpu-cuda100.image chainer
    	lico import_system_image letrain-cpu letrain-1.2-cpu.image letrain
    	lico import_system_image letrain-gpu letrain-1.2-gpu-cuda100.image letrain
    	lico import_system_image jupyter-py27-cpu jupyter-py27-cpu.image jupyter -t py27 -t cpu
    	lico import_system_image jupyter-py27-gpu jupyter-py27-gpu.image jupyter -t py27 -t gpu
    	lico import_system_image jupyter-py36-cpu jupyter-py36-cpu.image jupyter -t py36 -t cpu
    	lico import_system_image jupyter-py36-gpu jupyter-py36-gpu.image jupyter -t py36 -t gpu
    	lico import_system_image jupyter-py37-cpu jupyter-py37-cpu.image jupyter -t py37 -t cpu
    	lico import_system_image jupyter-py37-gpu jupyter-py37-gpu.image jupyter -t py37 -t gpu
    	lico import_system_image pytorch pytorch-1.1.0-gpu-cuda100.image pytorch
    	lico import_system_image scikit-cpu scikit-single-cpu.image scikit